The Harris RTX 2000 Microcontroller

Tom Hand
Senior Scientist
Harris Semiconductor
Melbourne, Florida 32902

Abstract .
Harris-Semiconductor has developed the RTX 2000, a highly integrated 10MHz 16-bit
microcontroller, for embedded applications that have demanding real-time requirements.
The RTX 2000 is a high-performance stack machine that has many of the advantages of RISC

proccsSors, but without their disadvantages. The RTX 2000 has a predictable run-time behavior
because of its advanced, yet simple, architectural features.

Introduction

The RTX 2000 is a highly integrated 16-bit microcontroller from Harris Semiconductor that
has been specifically designed for solving problems associated with embedded real-time systems.
It has a predictable run-time behavior, a key requirement of real-time systems.

The RTX 2000 is derived from earlier generation Novix stack machines. Novix Inc. of
Cupertino, CA first developed the Novix NC 4016 stack machine that directly executed 40 Forth
primitives as well as 123 combinations of Forth words as single instructions. The NC 4016 chip
used only 4000 gates that were built from just 16,000 CMOS transistors. Harris bought complete
rights to the Novix technology and in addition added on-chip stacks and other on-chip support
such as counter/timers, interrupt controllers, and a single-cycle multiplier. ‘

The architecture of the RTX 2000 encourages programming in a structured manner. To
accomplish this, subroutine calls have been implemented in such a way that they execute in one
machine cycle. More remarkably, subroutine returns are normally free; that is, they take zero
clock cycles to execute. As a result, application code is both extremely compact and fast.

The RTX 2000 is a stack machine; its machine language corresponds to certain sequences
of Forth instructions. Because four internal buses may be active at the same time, it is often
possible to execute the equivalent of several Forth instructions in a single machine cycle. This
guarantees that application code executes very quickly.

This article first briefly compares the RTX 2000 with RISC processors. Next, the RTX 2000
architecture is examined by discussing its basic buses and registers. Third, the instruction set of
the RTX 2000 is studied in detail. Finally, additional features of the RTX 2000 are discussed,;
these include interrupts, byte swapping and the single-cycle multiplier.

RTX 2000 Versus RISC Muachines

The RTX 2000 incorporates most of the advantages of RISC architectures, but without their
disadvantages.

RISC (Reduced Instruction Set Computers) machines have most of the characteristics listed
below:

Journal of Forth Application and Research Volume 6, Number 1

5

6 The Journal of Forth Application and Research Volume 6 Number 1

 a'large set of registers

¢ a simple set of instructions

¢ cxecution of most instructions in a single cycle

¢ cqual lengths of all instructions

e very few addressing modes

& no instructions that manipulate or modify the contents of memory

¢ no microcode

o utilization of pipelines and caches
Not every RISC machine has all of these characteristics, but most do have a significant number
of them. ‘

The RTX 2000 has most of the attributes listed above; the two items that really distinguish
the RTX 2000 from the RISC machines are the first and last items. Because RISC machines have
register-based architectures, a degree of complexity is added to their architectures to get higher
performance. Instructions are divided into components and pipelines are introduced to make
these components execute as stages in parallel. Typical pipeline stages are instruction fetch,
instruction decode, instruction execute and instruction write-out. Partly because of pipeline stalls
and delayed branches, caches are introduced. The resulting RISC architectures have better
performance than they had before the complexity was added, but at a definite cost.

In contrast, the RTX 2000 has a stack-based architecture so that operands are implicitly
known. This subtle idea is what makes stack machinessimple. RISC machines, on the other hand,
require explicitly referenced operands and ‘this leads to extra overhead, both in compiling by
optimizing compilers and in the size of memory required for the final compiled code.

The Architecture of the RTX 2000

The RTX 2000 is a highly integrated 16-bit microcontroller with three on-chip
counter/timers, an on-chip interrupt controller, two on-chip stack controllers and single cycle
16-by-16 on-chip hardware multiplier. Figure 1 is a block diagram that illustrates the basic
architecture of the RTX 2000. ‘

INTERRUPT INPUTS TIMER INPUTS

|

TROL cout A INTERRUPT
Con T —*| CONFIGURATION MULTIPLIER ol TIMERS
INPU CONTROL «
]
MEMORY ASIC
oy > AU RTX PROCESSOR Bus f—, OFFCHP
MENORY INTERFACE INTERFACE PERIPHERALS

PARAMETER. STACK RETURN
e— |—>1
STACK CONTROLLERS STACK -

Figure 1: RTX 2000 Architecture

The Harris RTX 2000 Microcontroller . : 7

At the center of the figure is the RTX core processor, which is the stack machine; Other
portions of the RTX 2000 are connected to the core processor through one of the RTX 2000’s
four buses listed below: : .

¢ parameter stack bus
e return stack bus.. -

e ASICbus

¢ memory bus

As a stack machine, the RTX 2000 has two on-chip stacks that are called the parameter and
return stacks. The parameter stack is used for passing arguments and manipulating data, the
return stack is used for return addresses and looping arguments. Having the stacks on-chip
significantly improves the performance of the RTX 2000. The parameter ‘and return stacks are
connected to the core processor through separate parameter stack and return stack buses.

The ASICbus is a high speed bus that connects the RTX 2000 to on-chip registers and devices
as well as to external I/O devices. Each device attached to the ASIC bus is assigned a specific /O
address. The RTX 2000 can address 32 ASIC devices.

The processor’s control and status registers are connected to the ASIC bus. ASIC addresses
0 through 23 are assigned to on-chip registers and devices. This includes the program counter,
the square root register, the configuration register, the data page register, the code page register,
the user page register, the user base register and the interrupt mask register. '

In addition, the two on-chip stack controllers, the on-chip interrupt controller, the three
on-chip 16-bit counter/timers and the 16-by-16 single cycle multiplier are all accessible through
the ASIC bus via ASIC bus read and write instructions.

Again, one of the advanced features of the RTX 2000 is its high speed ASIC bus. This bus
provides a natural extension to both internal and external devices.

Up to 512K words of memory may be addressed by the RTX 2000 through the memory bus.
Memory is divided into sixteen pages, each containing 32K words of memory. Memory may
consist of combinations of RAM, ROM or memory mapped I/O devices.

RTX 2000 Internal Registers

There are eight 16-bit registers which are internal to the processor. A brief description of
these registers is given below:

\

TOP contains the top item of the parameter stack. It is called the Top Register.
NEXT contains the second item of the parameter stack. It is called the Next Register.

IR contains the instruction currently being executed. It is called the
Instruction Register.

PC contains the address of the next instruction to be fetched from main memory.
It is called the Program Counter,

CR contains bits that indicate the status of the RTX 2000. Itis called the
Configuration Register.

I contains the top item of the return stack. It is called the Index Register.

MD normally contains the divisor during multi-step math operations. It is called
the Multi-step Divide Register. :

SR normally contains intermediate values used during square root calculations. It
is called the Square Root Register. - :

8 The Journal of Forth Application and Research Volume 6 Number 1

The RTX 2000 Instruction Set

' The RTX 2000 is a 16-bit machine. All of its instructions are 16 bits wide, with the exception
of long literals that take 16 bits for the instruction and 16 bits for the actual literal value.
RTX 2000 instructions execute in either one or two machine cycles. All primitive Forthwords
which do not perform memory accesses execute in one clock cycle. Memory access instructions
require two cycles.

Most math, /O and memory reference operations take their operands from the parameter
stack and leave their results on the parameter stack.

Instruction Format
The general format for the RTX 2000 instructions is given below:

Field : Bits Contents
Class : 12-15 type of instruction
ALU ' 8-11 ALU function to be performed
SC 6-7 subclass, depends on the class field
;) . .5 return bit, causes.a return when set
Data 0-4 indicates shift, short literal, ASIC

bus address or memory address
Instruction Class

The four most significant bits of each instruction indicate the class type of that instruction. \
There are eight general types of instructions as illustrated below: '

Class Operation
0-7 Subroutine call
8-9 Branches and loops
10 Math/logic functions
11 : Register and short literal operations
12 User memory access .’
13 Long literals
14 Memory access by word
15 . Memory access by byte

Subroutine Calls

As mentioned earlier, the RTX 2000 is optimized for writing modular applications. Sub-
routine calls within the same memory page are performed in one clock cycle; a call to a subroutine
in a different memory page takes three clock cycles. Returns take zero clock cycles when they are
performed as part of another instruction and one cycle when they are performed as separate
instructions.

If an instruction has bit 15 set to 0, it is a subroutine call. The format for the subroutine call is
Paaa aaaa aaaa aaaa

where the address of the subroutine is aaaa aaaa aaaa aaa, which is calculated by shifting the
low-order fifteen bits to the left by one bit and inserting a 0 in the least significant bit. Note that
the address of the subroutine called is embedded in the 16-bit call instruction.

Branch and Loops

The @BRANCH instruction belongs to class 8, while the BRANCH and NEXT instructions belong
to class 9. These instructions perform conditional and unconditional branches, réspectively.

The Harris RTX 2000 Microcontroller ' 9

All branches take one cycle, independent of whether or not the branch is actually taken. This
is in contrast to many RISC and CISC processors which take a variable number of cycles
depending on whether or not a branch is taken.

For high speed looping, the NEXT form of the conditional branch mstrucuon may be used.
With this instruction, a count is put in the Index register to indicate how many times the loop is
to be performed. The NEXT instruction tests the contents of the Index register at the conclusion
of each pass through the loop. If the contents of the Indexregister are 0, the return stack is popped
and exccution continues with the instruction that immediately follows NEXT; otherwise, the
contents of the Index register are decremented by one and a branch back to the start of the loop
is taken.

The format for this class of instructions is
188c chbha aaaa aaaa

where the two bits ‘cc’ specify the condition for branching as indicated below:

cc Branch condition

00 Branch if the contents of TOP is 0. Leave the stack unchanged.
01 Branch if the contents of TOP is 0. Pop the stack.

10 Perform an unconditional branch.

11 Branch if the contents of the INDEX register <> 0.

and the two bits ‘bb’ determine the block selection as indicated below:

bb Block selection

00 Branch within the same memory block (no change fo bits 10 — 15 of
the instruction).

01 Branch to the next memory block (add 1 to the value in bits 10 - 15).

10 Branch to block 0 (set each bitin 10 - 15 to a value of 0).

11 Branch to the previous block (subtract one from the value in bits

10-15).
The value ‘aaaaaaaaa’ indicates the offset from the start of the new block. This value replaces
bits 1 —9 of the Program Counter. Branch addresses are always even numbers.
The RTX 2000 has a streamed instruction capability that can execute repeatedly an instruc-

tion without continually performing the fetch cycle of the instruction. This feature is very useful
for fast data transfers, loops and certain math functions.

ALU Operations

The ALU operations are performed by the RTX’s 16-bit ALU, one operand being the
contents of the TOP register and the other being determined by the instruction. The result of an
ALU operation is placed in the TOP register.

The twelve possible ALU operations are briefly described below. “T” indicates the TOP
register and “Y” indicates the second source of the ALU operation.

10 The Journal of Forth Application and Research Volume 6 Number 1

ccec aaa "~ Function: Resulting carry
0010 001 TAND Y no change
0011 TNORY no change
0100 010 T-Y ALU carry
0101 : T—Y with borrow ALU carry
0110 011 TORY - no change
0111 TNAND Y no-change
1000 100 T+Y ALU carry
1001 T + Y with carry ALU carry
1010 101 TXORY no change
1011 TXNORY no change
1100 110 Y-T ALU-carry
1101 Y —T with borrow ALU carry

A literal is a constant value that may be used as part of cither an arithmetic or a logical
operation. There are two types of literals that are recognized by the RTX 2000; namely, short
literals and long literals. Short literals are stored as five bits whereas long literals take sixteen
bits. '

Short Literals

Short literals are 5-bit unsigned integer values between 0 and 31. They are embedded in short
literal instructions and are denoted by ‘ddddd’. The format for the short literal instructions is .

1611 vvvv v1;d dddd

where the v’ bits determine the particular variation of the short literal instruction. For the
complete list of variations, see Table 1 which contains all the RTX 2000 instructions.

When a short literal instruction is executed, the value represented by ‘ddddd’ is loaded into
the TOP register.

User Memory Access

User memory space consists of blocks of 32 words that can be accessed without having to
first calculate an address and then load it into the TOP register. The location of the user memory
space can be specified by the user by loading a desired base address into the user base register.
The offset within the 32-word block is embedded in the user access instruction. Therefore, this
class of instructions perform fast reads and writes from and to user memory space.

The offset is encoded as a 5-bit field in the instruction and is denoted by ‘vuuuv’. The format
for the user memory access instructions is

1160 vvvv v@3;u uuuu

where the ‘v’ bits determine the particular variation of the user memory access instruction. For
the complete list of variations, see Table 1.
Long Literals

Alongliteral value may be a signed or unsigned 16-bit integer. Long literals are fetched from
memory, so that an additional clock cycle is necessary for the execution of an instruction that
involves a long literal.

The long literal instructions generate 16-bit values. The format for the long literal instruc-
tions is

1101 vvvyv v@:x xxxx dddd dddd dddd dddd

The Harris RTX 2000 Microcontroller : 11

where the v’ bits determine the particular variation of the long literal instruction and the %’
bits are don’t care bits. For the complete list of variations, see Table 1. The value dddd dddd dddd
dddd is the long literal value. Long literals are the only RTX 2000 instructions that occupy two
words of memory.

Data Memory Access
The RTX 2000 can access data memory as either 16-bit words or as 8-bit bytes. The format

for the data memory access instructions is v

111ls vvvv vv;v vVvYv
where the v’ bits determine the particular variation of the data memory access instruction and
the ‘s’ bit indicates the size of the operand:

s = 0, for 16-bit words,

s = 1, for 8-bit bytes.
The formats for both word and byte access instructions are the same. For the complete list of
variations, see Table 1.

Subroutine Returns

Instructions, that are not call or branch instructions, that have the subroutine bit (bit 5) set
execute a subroutine return. The format for the subroutine return instruction is

lvvv vvvv vvly vvvy

where the ‘v’ bits determine the RTX 2000 instruction to be executed along with a return. See
Table 1 for the many possible variations. Note that bit 5 cannot be used as a subroutine bit in
subroutine call or branch instructions since it is one of the bits used to determine the branch
address.

A definite architectural advantage is gained by dedicating a single bit for indicating a
subroutine return. Other architectures require 16-bit or 32-bit instructions to accomplish the
same thing. For example, on the RTX 2000, the optimized code corresponding to

SWAP DROP DUP ;
is AOAO (hex), with the return bit set to 1; whereas, the optimized code for
SWAP DROP DUP

is AOB0 (hex), with the return bit set to 0. In these cases, the equivalent of three or four Forth
instructions are executed in one machine cycle.

The RTX 2000 Instructions

Table 1 contains the specification of the complete RTX 2000 instruction set. Each type of
instruction has been discussed in an earlier section. For reference, all instructions are placed here
in one table.

Interrupts

The RTX 2000 has an on-chip interrupt controller with fourteen interrupt request inputs
for servicing on-chip as well as external interrupts.

Thirteen of the interrupt requests are maskable while the remaining interrupt request is
non-maskable. The interrupt controller samples the interrupt request inputs during each instruc-
tion, prioritizes the active requests and signals the processor of pending interrupt requests.

12

The Journal of Forth Application and Research

Volume 6 Number 1

Subroutine Call
Paaa aaaa aaaa aaaa
Subroutine Call

IxxX XXXX XX1X XXXX

cali word address

return from subroutine

Single Step Math Functions

10168
1218
12108
1010
1010
1018
1019
1019
1910
1018
1010
1918

Step Math Functions

2001
1114
cecec
2001
1111
ccee
@0ai
1111
ccee
o0ai
1114
cecee

20;0
08;a
08;90
21;0
21;0
21;8
10;9
19;0
10;0
11;0
11;9
11;9

SSSS
SSSS
§SSS
§SS8S
SSSS
SSS8S
S$S58S
SSS§S
SSS§S
SSSS
SS55S
SSSS

1818 vvvv vvvl vvvy
Branch Functions

1000
1000
1201
1201

Register and I/O Access

@bba
1bba
@bba
1bba

aaaa
aaaa
aaaa
daaa

1011 008 20;9
1011 1117 2039
16011 cccc 18;9g
1911 gegi 10;g
1911 1114 1839
1811 cccc 18;g

Short Literal

1211
1211
1811
1911
1211

2091
1114
ccee
1111
ccce

x1;d
21;d
#1;d
113d
11;d

User Space

1100
1100
1100
1120
110@
1100

2001
111
ccee
0001
1114
ceee

2d;u
@3;u
283u
19;u
19;u
183u

Long Literal

1101 0001 x8;x
1191 111§ @@;x
1181 ccecc @9;x
1191 1117 18;x
1101 cccc 18;x

Memory Access

111s
111s
111s
111s
111s
111s
111s
111s
111s
111s
111s
111s

wheres = 0,
s=1,

2001
1114
ceee
200p
111p
aaap
2001
1114
ccee
09@p
111p
aaap

28 x
08 x
23;x
21l;x
B21;d
21;d
189;x
13;x
12;x
11;x
11;d
11;d

aaaa
aaaa
aaaa
aaa

9999
9999
9999
9999
g99g
9999

dddd
dddd
dddd
dddd
dddd

uuuu
uuuu
uuuu
uuuu
uuuu
uuuu

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
dddd
dddd
XXXX
XXXX
XXXX
XXXX
dddd
dddd

{NOT} shift

DROP DUP {NOT} shift
OVER SWAP alu-op shift
SWAP DROP {NOT} shift
DROP {NOT} shift
alu-op shift

SWAP DROP DUP {NOT} shift
SWAP {NOT} shift

SWAP OVER alu-op shift
DUP {NOT} shift

OVER {NOT} shift

OVER OVER alu-op shift

?DUP @BRANCH
@BRANCH
BRANCH

NEXT

g G@ DROP. {NOT}
g G@ {NOT}

g G@ OVER alu-op
DUP g G! {NOT}

g G! {NOT}

g G@ SWAP alu-op

d DROP {NOT}

d {NOT}

d OVER alu-op

d SWAP DROP {NOT}

d SWAP alu-op

1st cycle

u @ SWAP

u @ SWAP

u @ SWAP

DUP u !

DUP u !

u @ SWAP

1st cycle

D SWAP

D SWAP

D SWAP

D SWAP

D SWAP

1st cycle

@ SWAP

@ SWAP

@ SWAP

{SWAP DROP} DUP @ SWAP
{SWAP DROP} @ d

{SWAP DROP) DUP @ SWAP d SWAP alu-op
OVER SWAP !

OVER SWAP 1

@ SWAP

{OVER SWAP} SWAP OVER
{OVER SWAP} ! d

{OVER SWAP} SWAP OVER ! d SWAP alu-op

for memory access by word (@ and !)
for memory access by byte (€@ and C!)
{SWAP DROP} and {OVER SWAP} are performed if p = 0

Table 1. RTX 2000 Instructions

daa aaad aaaa aaaa .

2nd cycle

{NOT}

SWAP {NOT}

SWAP OVER alu-op
{NOT}

DROP {NOT}
alu-op

2nd cycle

{NOT}

SWAP {NOT}

SWAP OVER alu-op
DROP {NOT}
alu-op

2nd cycle

{NOT)

SWAP {NOT}

SWAP OVER alu-op
NOP

NOP

NOP

{NOT}

DROP {NOT}
alu-op

NOP

NOP

NOP

The Harris RTX 2000 Microcontroller 13

Interrupts can be enabled or disabled by means of the interrupt disable bit in the processor’s
configuration register. Interrupts are disabled when this bit is set to 1 and enabled when it is set
to 0.

The RTX 2000 has a single level software interrupt capability.
Byte Swapping
Interfacing with non-RTX processors is supported through shared memory. The RTX 2000

has a byte swapping feature that allows 16-bit values to be read and written so that the most
significant byte can be associated with either an even or an odd address.

The Multiplier

The on-chip single cycle hardware multiplier of the RTX 2000 multiplies two 16-bit numbers
yielding a 32-bit result in only one clock cycle. The two 16-bit operands can be treated as cither
signed or unsigned integers. In addition, the resulting product can optionally be rounded to 16
bits. As mentioned earlier, the multiplier is connected to the ASIC bus.

Conclusion

In summary, the RTX 2000 is a high performance highly integrated stack machine that has
been designed for embedded real-time applications. Very compact and fast code results from its
advanced, yet simple, architectural features.

References

[ASPL8T7] Proceedings: Second International Conference on Architectural Support for Program.-
ming Languages and Operating Systems (ASPLOS II), The Computer Society Press, IEEE,
1987.

[GLAS89] Glass, H.,Mellen, M., Hand, T., “The Design of a Real-time Multi-taskin g Operating
System Kernel for the Harris RTX 2000,” Proceedings of the 1989 SIGForth Conference,
Austin, Texas, 1989.

[HANDS89] Hand, T, “Architecture Impact on Compiler Construction,” Proceedings of the 1989
SIGForth Conference, Austin, Texas, 1989.

[HANDB89a] Hand, T, “Metrics for Real-time Systems,” Proceedings of the 1989 SIGForth
Conference,” Austin, Texas, 1989.

[HARRS88] “RTX Real Time Express: Reference Manual,” Harris Semiconductor, Melbourne,
Florida, 1988.

[HAYESS] Hayes, J., Computer Architecture and Organization, McGraw Hill, 1988.
[PATT8S] Patterson, D., “Reduced Instruction Set Computers,” CACM 28(1), Jan. 1985.

Dr. Tom Hand received his Ph.D. in Mathematics from the University of Oklahoma in 1972, and
has been in the computer field for more than twenty years in industry and at the University. As
Graduate Program Chairman in' Computer Science at the Florida Institute of Technology he
examined Forth as a vehicle for implementing compilers, expert systems, natural language front-ends
and operating systems. Currently, he is a Senior Scientist at Harris Semiconductor and is involved
with the development of the RTX family of microcontrollers.

